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Abstract The insertion of guest particles into insertion
and intercalation compounds is reconsidered from the
viewpoint of reversible thermodynamics. A correlation
between enthalpy of formation and volume changes
is described, the latter being accessible from X-ray
data. The phase changes caused by guest insertion
are emphasized. Tungsten bronzes are used as model
data.

Keywords Intercalation Æ Insertion Æ Thermodynamics Æ
Simulation Æ Diffusion

Symbols

C concentration of mobile species (mol m–3)
Cp specific heat (J mol–1)
D diffusion coefficient (m2 s–1)
D0 thermodynamic diffusion coefficient (m2 s–1)
index M for the guest
index H for the host
P pressure, a scalar, independent of surface ori-

entation (Pa)

V partial molar volume of the systems (m3 mol–1)
x stoichiometric ratio of sites in the lattice oc-

cupied by the guest particles to their number
(0<x<1) (dimensionless)

xmax maximum available value of x for certain
crystalline modifications to full saturation of
the lattice by the guest

x¢in minimum value of x which indicates the change
of crystalline modification (x¢in>xmax)

R ideal-gas constant (83,145 J K–1 mol–1)
t time (s)
T temperature (K)
a linear thermal expansion (taken from litera-

ture)

c angle of lattice between a and b crystalline
lattice parameters (deg)

cM, cH activity coefficients (dimensionless)
G Grüneisen constant
d a parameter
DHtr enthalpy change for transition (kJ mol–1)
DH* additional change of enthalpy (kJ mol–1)
j volume isothermal compressibility (Pa–1)
l chemical potential of the inserted species

(J mol–1)

l0 standard chemical potential of the reaction
(J mol–1)

l1(x) additional chemical potential corresponding to
non-ideal behaviour of the system (J mol–1)

n coordinate vector of concentrations at time tj

Introduction

The search for new sources of electrical energy has in-
cluded batteries based on the electrochemical formation
of intercalation or insertion compounds. In this way,
batteries with very high specific energy have been
designed and brought to commercial use. The funda-
mentals of the principle have been described [1].

The intercalation compound is formed from a solid
host substance and particles of the guest. The host lattice
contains regularly spaced and mutually interconnected
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voids. As a rule, the term ‘‘intercalation’’ is used mostly
for host substances of the layered type (such as graphite,
TiS2, MoS2 or LiCoO2), while the more general term
‘‘insertion’’ suits better those substances with a three-
dimensional framework containing cavities connected by
narrow channels. The conclusions presented in this pa-
per were tested on a typical insertion system of tungsten
bronzes. They follow from reversible thermodynamics
and therefore should be valid generally.

Results and discussion

Definition of insertion compounds

Let an insertion compound MxH be formed from the
host substance (marked as H) and inserted metal ions
M+ according to the electrochemical reaction:

Hþ xMþ þ xe� ! MxH ð1Þ

The stoichiometric ratio x is the ratio of the number
of lattice sites occupied by the guest to all their number
so that x=1 would correspond to full saturation of
the lattice by the guest. Its value is dependent on the
activity of the guest in the surroundings under the
assumption that the non-stoichiometric compound is in
equilibrium with its surroundings at actual potential.
The value x=1 cannot be reached sometimes owing to
thermodynamic reasons; the maximum value of the
fraction available at reasonable conditions would then
be equal to xmax<1.

Another phenomenon appears if the system can exist
in two different crystalline modifications. Then the less
saturated modification can exist only to some value of
xmax and the other modification is created at some
value of x¢min>xmax and the modification change is
accompanied by a non-zero change of enthalpy, DHtr.
Then a ‘‘solubility gap’’ appears and the change is a
first-order phase transition, while a continuous change
without any gap and with negligibly low enthalpy
change appears sometimes and has to be considered as
a second-order transition. In the latter case, both the
thresholds are identical (i.e. xmax=x¢min). Both cases
are known in the system of ReO3-perovskite tungsten
bronzes.

The well-known Faughnan-Armand equation [2, 3, 4]
should be valid for the chemical potential of guest M in
the compound:

l ¼ l0 þ l1 xð Þ þ RT ln
x

1� x

h i
ð2Þ

In this equation, l is the chemical potential of the in-
serted species, l0 is the standard chemical potential of
reaction 1, and l1(x) is the additional chemical potential
corresponding to the non-ideal behaviour of the system
at the guest concentration corresponding to the value of
the stoichiometric ratio x. The symbols R and T have
their conventional meanings.

Some standard state must be defined using similar
equations. A hypothetical state with x=1 and without
any non-ideal behaviour (i.e. without any dependence of
enthalpy change on the degree of saturation) must be
considered here. Similarly, an ideal insertion compound
is such that the term l1=0. In other words, the energy of
intercalation does not depend on x and the entropy is
governed just by the randomness of guest distribution in
the host.

Assumptions

The following assumptions were taken:

1. The distribution of particles M in the lattice is ran-
dom (therefore, the entropy of insertion is related to
the random occupation of vacant sites only).

2. The stoichiometric ratio x is defined within the range
0<x<1.

3. If any phase transition appears in the process of in-
sertion, then the enthalpy change of transition, DHtr,
is either small or virtually zero. In the latter case we
can talk of a second-order transition; otherwise we
assume the process is a first-order transition. The
host lattice should not undergo any massive change
in either type of transition.

4. The energy of free electron formation is constant and
its contribution to the additional chemical potential
may be neglected (i.e. as the energy of degenerated
electron gas). This is valid with some approximation
only; any kind of this sort of concentration-depen-
dent energy should be included in the term l1 from
the viewpoint of reversible macroscopic thermody-
namics.

5. As in any condensed phase, the work against exter-
nal pressure can be neglected. In other words, in-
ternal energy and enthalpy can be considered as
equal.

Partial molar volume of metal in the compound

The insertion of guest particles M is accompanied by
lattice expansion. In most cases this expansion is a linear
function of the stoichiometric ratio of the guest x; this
expansion does not exceed a few percent and the linear
change is known as Vegard’s law [5, 6]. Hence, this re-
lation can be generalized easily to the molar volume
V and its dependence on x:

V ¼ VH þ xVM ð3Þ

This formula can be derived from the influence of x on
all lattice parameters by a simple geometric consider-
ation; this is obvious in the case of anisotropic systems.
This relation defines the partial molar volumes of the
host VH and guest particles VM, the values of which can
be evaluated from X-ray data easily.
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Chemical potential of the metal in the compound

Let j be the volume isothermal compressibility:

j ¼ 1

V
@V
@P

� �

T
ð4Þ

Its value is considered as constant and independent of x
as a first approximation. Moreover, it is a scalar quan-
tity and corresponds to volume changes caused by an
external pressure. Assuming formal thermodynamics to
be valid, then the additional change of enthalpy associ-
ated with the insertion of the guest, DH*, should be
related to the volume by the relation of Eq. 5.

The additional change of enthalpy, DH*, here repre-
senting the work absorbed by the cohesion or repulsion
forces, can be expressed as:

@2DH�

@V 2

� �
¼ 1

V � j ð5Þ

In accordance with assumptions (1) and (4), the addi-
tional chemical potential does not include any entropy
contribution and can be estimated from the corre-
sponding change of enthalpy, DH*, as the first derivative
¶DH*/¶x.

Introducing the molar volume of the host from Eq. 3
into Eq. 5 and performing a twofold integration of the
result, both from the volume VH to VH+xVM, we ob-
tain the enthalpy change equal to the work spent against
cohesion or repulsion forces in the lattice. Finally, the
partial molar additional chemical potential l1(x) is
obtained as the derivative of the last result by x. Ac-
cording to our assumptions, the entropy change does
not contain any other contribution than the configura-
tion term described by the logarithmic term in Eq. 2.
Despite the chemical or physical nature of the system
under investigation, this result follows from formal
reversible thermodynamics and it must be valid for any
kind of host-guest interaction and can therefore be
generalized.

It follows that the partial molar enthalpy should
contain the non-ideal contribution:

l1 xð Þ ¼ 1

2j
V 2
M

VH
x ð6Þ

Note that only the compressibility and the volume
changes have to be evaluated experimentally. In this
model, we consider that cohesion and repulsion forces in
the lattice are in equilibrium and thus equal. Further,
this quantity is always positive due to the quadratic term
VM

2.

Enthalpy of phase transitions

Let VH be the molar volume of the pure host compound
and V is the molar volume of the insertion compound.
Then we can compute easily the work necessary for the
volume change from the compressibility by twofold

integration over the volume change. Then, a similar
formula can be derived for the change of enthalpy of the
phase transition, DHtr:

DH tr ¼ 1

2j
V � VHð Þ2

VH
x ð7Þ

This formula should be valid only for the enthalpy of
transition of various phases if the phase formation is just
a change of symmetry, such as if two values of the lattice
parameters a and b are approaching mutually or at an
angle c to 90� without any essential rearrangement of
atoms in the lattice (e.g. the formation of tunnel or
layered structures).

Diffusion kinetics of insertion

According to Darken theory, the diffusion coefficient D
has to be corrected by the activity coefficient of the
diffusing species. We suppose that the activity coefficient
cM reflects the change of additional enthalpy DH* and is
related to the linear term in Eq. 2 only and its value
should be derived easily in following way:

D ¼ D0 1þ @ lncM

@ lnC

� �
¼ D0 1þ 1

2jRT
V 2
M

VH
x

� �
ð8Þ

where D0 is the thermodynamic diffusion coefficient, cM
is the activity coefficient of the guest and C is the
concentration of the mobile species. Here, the linear
term is accessible from crystallographic data as well. The
ratio D/D0 reaches considerable values and should be
considered in numerical simulations of transients, etc.
[7].

Tungsten bronzes as a model system

Tungsten bronzes have been used readily as an almost
ideal system of insertion compounds. We therefore used
them for demonstration of our model. Tungsten bronzes
are insertion compounds of a general formula MxWO3.
Depending on the value of x, their structures vary from
monoclinic, orthorhombic, tetragonal II and, finally, to
cubic for xfi1. First, two transitions can be described as
second-order transitions. The angle c approaches to 90�
first and the monoclinic structure becomes an ortho-
rhombic one. When the x value increases beyond that
point, the parameters a and b become equal gradually
and, finally, the lattice is converted into a structure
named tetragonal II when a=b [11]. A gap between the
tetragonal II and cubic (perovskite-like) structures in-
dicates that some non-zero enthalpy change of transition
is necessary for this process. Other structures such as
hexagonal and tetragonal I are of different configura-
tions, characterized by voids arranged in tunnels (two
kinds in hexagonal bronzes and three in tetragonal) and
our model should be considered as a rough approxi-
mation only in their case.
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The value of the compressibility, j=1.25·1011 Pa–1,
was found experimentally for cubic tungsten bronzes [8],
while an estimate from the Grüneisen constant G=1
using the semi-empirical relation:

C ¼ 3V
a

jCp
� 1 ð9Þ

offered the value j=0.95·1011 Pa–1. Values of the spe-
cific heat Cp and the linear thermal expansion a were
taken from the literature [9]. The partial molar volume
VM, evaluated from crystallographic data, and the
maximum stoichiometric ratio, xmax, were compiled
from references which are noted in Table 1.

Transition enthalpies

The data by Wechter et al. [6] were used for estimation
of the partial molar volumes of the host in the case of
cubic bronzes by the extrapolation to xfi0, while
Anderson’s data [10] were used for monoclinic WO3.
The remaining data (for orthorhombic and tetragonal II
bronzes) were taken from Reau et al. [11] in a similar
way. The results are summarized in Table 1.

The calorimetric datawere given byDickens andNield
[12] for several x values; the DHtr could be estimated
from them by a linear extrapolation (6.5 kJ mol–1). The
data of Morozova and Ovcharova [13] yielded a value
slightly higher in the same way (9.2 kJ mol–1). Both are
slightly higher than that evaluated from the partial
molar volumes of pure WO3 and of cubic bronzes by
Wechter et al. (see Table 2). However, these values ex-
plain at least qualitatively the gap between xmax,tetr<0.1
for the tetragonal II and x¢min,cub>0.37 for cubic sodium
bronzes.

The transition from monoclinic to orthorhombic and,
finally, to tetragonal II is more or less continuous and

should be treated as a second-order phase transition,
with discontinuities of the first derivatives of the fun-
damental thermodynamic functions (in other words, the
discontinuities of partial molar quantities). There is no
detectable change of partial molar volume connected
with this transition. Therefore, the transition enthalpy
change of these processes is small or zero.

Partial molar volume of guest particles

A collection of literature data is summarized in Table 1,
where the ionic radius q, the change of enthalpy DH*
(corresponding to hypothetical x=1) and the experi-
mental value xmax are listed. Essentially, the elements
entering tungsten oxide to create the bronze can be di-
vided into three groups. The first two are the cubic
bronzes and the bronzes possessing hexagonal tunnel
structure, for which the relations should be taken with
caution, as noted above. The guest in their case is de-
noted by an asterisk. Metals of these groups possess low
electronegativity and their partial molar volume is con-
trolled just by the geometry of their ions and the di-
mensions of the voids in the lattice. Therefore, their
entry to the lattice is easy and rather high saturation
(expressed as xmax) is possible. Contrary to this, metals
and semimetals of the third group create bronzes with
difficulty, which increases with increasing electroneg-
ativity. As a result, only very low saturation (i.e.
xmax<<1) is possible in their case. The estimated
enthalpy change DH* for xfi1 is quite high and this
prevents the saturation to a higher level.

Voltammetry of insertion compounds

The theoretical description of diffusion processes in
insertion compounds was given by Lovric et al. [14]
recently, who introduced the idea of a concentration gap
between two successive phases which depends on the
value of x. Our model offers a deeper view on this topic.
According to the Darken formula, the chemical diffu-
sion coefficient should be a linear function of x. Simi-
larly to our previous paper [7], waveforms known from
experiments with insertion compounds can be obtained
by numerical solution of a generalized second Fick law
for the case of a variable diffusion coefficient. The
modification of the Feldberg method, together with a

Table 1 Partial molar volumes of metal and compressibility of
tungsten bronzesa

Guest VM·10–6 q DH* for
x=1

xmax Ref.

Li –4.3 0.071 25.7 0.5 [15]
Na 2.12 0.095 6.26 �1 [5]
K 4.07 0.135 23.1 0.6 [16]
Al* 6.47 0.052 58.3 0.135 [17]
Y* 4.87 0.096 33.0 0.15 [18]
La* 12.4 0.122 214.0 0.19 [19]
Pr* 10.7 0.118 187.0 – [20]
Gd* 6.53 0.111 59.3 – [19]
Lu* 0.64 0.099 0.570 – [19]
Cd 11.68 0.099 197.5 0.15 [20]
Ge 16.46 0.053 376.8 0.07 [21]
Sb 16.85 0.076 395.3 0.07 [22]
As 15.64 0.058 354.0 0.06 [23]
Hg 109.98 0.119 17 600.0 0.0023 [10]

aq=ionic radius (nm); VM=partial molar volume of metal in the
bronze (m3 mol–1); DH*=additional enthalpy of insertion (kJ
mol–1); xmax=maximum concentration of the guest known in the
bronze; M*=guest possessing hexagonal tunnel structure

Table 2 Properties of host lattices of tungsten bronzesa

Lattice a0 b0 c0 c0 VH·106 DHtr Ref.

Monoclinic 0.72885 0.7517 0.3835 90.90 31.374 – [10]
Orthorhombic 0.72235 0.7488 0.3821 – 31.120 0.09 [11]
Tetragonal II 0.52199 – 0.3560 – 31.699 0.12 [11]
Cubic 0.37845 – – – 32.644 2.34 [6]

aa0, b0, c0 (nm), c0 (deg)=lattice constants; VH=partial molar
volume of the host (m3 mol–1); DHtr=enthalpy of transformation
from monoclinic structure (kJ mol–1)

364



‘‘regula falsi’’ solution of an electrochemical modifica-
tion of Eq. 2 for evaluation of the concentration from
the potential, was found to be the best approach. For
mathematical details, see the Appendix.

A program has been created using Quick Basic 4.5. It
describes the diffusion in a thin sheet, which is divided
into 100 equidistant coordinate steps, and the equal
exposition to electrode reactions from both sides of the
sheet is supposed. The electrochemical insertion of a
univalent cationic species according to Eq. 1 was con-
sidered. In following examples, voltammetry from a
starting potential of –0.5 V to a vertex potential of
+0.4 V or the opposite, from +0.4 V to a vertex point
of –0.5 V, were used. Equation 2 was recalculated from
enthalpy units to potential. Further, the value of l1(x)
corresponding to the potential change of +0.5 V for the
stoichiometric coefficient changing from 0 to 1 was
chosen as an example.

The voltammograms computed with and without the
application of the Darken correction term (Eq. 8) were
evaluated. Simultaneously, the concentration profile at
the vertex point was also recorded. The results are de-
picted in Figs. 1, 2, 3. The voltammograms obtained
with the Darken correction are plotted by full lines,
those obtained without it are plotted by dashed and
dotted lines (see Fig. 1). They are rather unsymmetrical
and their shape is well known from the electrochemistry
of insertion compounds. The parts describing the in-
sertion processes differ strongly from classical ones and
they are rather flat and broad. Note that the cathodic
part is rather distorted and similar to a wave, while the
anodic part is more similar to a peak. No great differ-
ence between the voltammograms starting at +0.4 V

and/or –0.5 V appeared. The main difference in shape is
that the peak starting at positive potential is sharper in
the absence of the Darken term, while the increase of the
apparent diffusion coefficient influences the descending
part of the saturating peak, where the overall amount of

Fig. 1 The results of simulations of the diffusion processes. Full
line: the linear term l1=0. Dashed and dotted lines: values l1

corresponding to voltage shifts of 0.2 V and 0.5 V, respectively

Fig. 2 The distribution of concentration expressed as a stoichio-
metric coefficient x at the vertex point of the voltammetric curve.
Solid curves: distribution of x when the parameter l1 corresponds
to a voltage span of 0.5 V; curve 1: from cathodic to anodic side;
curve 2: from anodic to cathodic side. Dotted curves 3 and 4: the
same for l1=0. No Darken correction applied

Fig. 3 The distribution of concentration expressed as the stoichio-
metric coefficient x at the vertex point of a voltammetric curve.
Solid curves: distribution of x when the parameter l1 corresponds
to a voltage span of 0.5 V; curve 1: from cathodic to anodic side;
curve 2: from anodic to cathodic side. Dotted curves 3 and 4: the
same for l1=0. Darken correction according to Eq. 8 applied in
computation of curves 1 and 2
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inserted substance is greater. As a result, the peak is
fairly broad and its maximum is shifted to more negative
values. This follows from the fact that the conditions for
the diffusion flow are given by the state of the sub-
surface layer of the sheet. Finally, there is a marked
difference in the magnitude of the current, which
increased considerably by the application of the Darken
term (full lines in Fig. 1) in comparison to the voltam-
mograms not considering this correction (dashed lines in
Fig. 1).

The voltammograms computed for l1(x)=0, which
are quite similar to the classical result calculations (for
example, see [24]), are given in Fig. 1 for comparison
(see the dotted curve).

The explanation of these effects is given in Figs. 2 and
3, where the concentration profiles at the vertex poten-
tial are plotted for voltammograms computed without
and with the Darken correction term and starting an-
odically as well as cathodically. In Fig. 2 we see that the
concentration profile is similar for saturation and de-
pletion if no Darken term is applied. The profiles cor-
respond to the vertex point of the voltammetric curve.
Owing to the values of the potentials and l1(x), the
potential 0.4 V does not ensure complete removal of the
guest from the sheet. Nevertheless, the profile is very
similar to the inverse process. The profiles computed for
l1=0 are given for comparison (dotted line in Fig. 2).

The influence of the Darken term is shown in Fig. 3.
Owing to the point-by-point change of the apparent
diffusion coefficient, the diffusion flow changes consid-
erably. Therefore, both curves differ considerably. For a
saturation process (i.e. from +0.4 V to –0.5 V) the con-
centration distribution (expressed here as the stoichio-
metric coefficient x) at the vertex point is undoubtedly
very different from the opposite case. Correspondingly,
the profile inside the sheet must reflect this difference.

As was shown in our previous paper [7], general
features of processes controlled by diffusion are not
much influenced by the Darken term (for example, the
proportionality of the current to D1/2). However, abso-
lute values of the current reflect this term and a cor-
rection coefficient should be used for estimation of the
rate of diffusion.

The distortion of the concentration profiles shown in
Fig. 3 should be taken into consideration, for example in
the explanation of incomplete charging and discharging
of intercalation electrodes in lithium batteries.

Any existence of a phase transition (both first order
and second order) must be treated in a similar way.
More thorough calculations of insertion processes will
be the subject of a future paper. Several models of phase
transitions in intercalation processes should be empha-
sized in a way that was indicated previously [14].

Conclusions

The formation of insertion compounds by insertion of
atoms or ions into the host substance is accompanied by

a change of thermodynamic parameters of the system.
This change can be described as the influence of a stoi-
chiometric ratio on the enthalpy of insertion. From
formal reversible thermodynamics, this influence is cor-
related to volume changes if the volume compressibility
is considered. In this way, volume changes as estimated
by X-ray diffraction can be correlated to the electro-
chemical isotherm of insertion, to the changes of the
diffusion coefficient, and to the stability of the insertion
compounds.

The diffusion-controlled voltammetric curves were
computed by the finite difference method and consider-
ation of the distortion of the diffusion coefficient by the
Darken correction was shown to be rather essential.
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Appendix

The numerical solution of Eq. 2

The computation of value of x from the potential E or
from the value of the chemical potential l is based on
following method. For a chemical potential sufficiently
outside the interval <l0; l0+l1>, Eq. 2 can be ap-
proximated by a simple Nernstian form. For example, if
the solution should be close to unity, then Eq. 2 can be
replace by l=l0+l1 – RTln(1 – x), which can be solved
easily and will yield a value of sufficient precision.

For other values, the well-known method ‘‘regula
falsi’’ offers a solution which is stable numerically. We
can select two approximations x0 and x1, compute cor-
responding values of l, and obtain a secant to the
function on the right-hand side of Eq. 2. When equating
it to the value of the potential, we obtain a new ap-
proximation and replace one of the original values by it.
We repeat the procedure until two successive approxi-
mations do not differ by more than some estimated
precision.

Implicit solution of the second Fick law

We suppose a one-dimensional case (the diffusion in a
finite sheet was used in this paper). The coordinate n is
divided into n equidistant intervals Dn. Let y(i) (i=0, ...,
n) be the vector of concentration y at time tj. The cor-
responding vector y¢(i) valid for time tj+1=tj+Dt is
given by a series of equations:

y ið Þ ¼ y0 ið Þ � d y0 iþ 1ð Þ � 2y0 ið Þ þ y0 i� 1ð Þ½ � ðA1Þ

The parameter d=DDt/Dn can be varied for each point.
First, the values y¢(0) and y¢(n) are computed from the
potential at time tj+1. Then a set of n linear equations is
formed and expressed as a tri-diagonal matrix, the
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inversion of which by elimination is possible and stable
enough for any reasonable value of the parameter d. As
usual, the current is evaluated by as x(0) – x(1). For
details, see Appendix B in [24].
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